When it comes to memory overclocking, there are several ways to approach the issue.  Typically memory overclocking is rarely required - only those attempting to run benchmarks need worry about pushing the memory to its uppermost limits.  It also depends highly on the memory kits being used - memory is similar to processors in the fact that the ICs are binned to a rated speed.  The higher the bin, the better the speed - however if there is a demand for lower speed memory, then the higher bin parts may be declocked to increase supply of the lower clocked component.  Similarly, for the high end frequency kits, less than 1% of all ICs tested may actually hit the speed of the kit, hence the price for these kits increase exponentially.

With this in mind, there are several ways a user can approach overclocking memory.  The art of overclocking memory can be as complex or as simple as the user would like - typically the dark side of memory overclocking requires deep in-depth knowledge of how memory works at a fundamental level.  For the purposes of this review, we are taking overclocking in three different scenarios:

a) From XMP, adjust Command Rate from 2T to 1T
b) From XMP, increase Memory Speed strap (e.g. 1333 MHz -> 1400 -> 1600)
c) From XMP, decrease main sub-timings (e.g. 10-12-12 to 9-11-11 to 8-10-10)

There is plenty of scope to overclock beyond this, such as adjusting voltages or the voltage of the memory controller.  As long as a user is confident with adjusting these settings, then there is a good chance that the results here will be surpassed.   There is also the fact that individual sticks of memory may perform better than the rest of the kit, or that one of the modules could be a complete dud and hold the rest of the kit back.  For the purpose of this review we are seeing if the memory out of the box, and the performance of the kit as a whole, will work faster at the rated voltage.

In order to ensure that the kit is stable at the new speed, we run the Linpack test within OCCT for five minutes.  This is a small but thorough test, and we understand that users may wish to stability test for longer to reassure themselves of a longer element of stability.  However for the purposes of throughput, a five minute test will catch immediate errors from the overclocking of the memory.

With this in mind, the kit performed as follows:

GEW316GB2400C11ADC – 2x8 GB rated at DDR3-2400 11-12-12-30 2T 1.65 volts

Adjusting from 2T to 1T: Passes Linpack
Adjusting from 2400 to 2600: Passes Linpack
Adjusting from 2600 to 2666: Fails Linpack
Adjusting from 11-12-12 to 10-11-11: Passes Linpack
Adjusting from 10-11-11 to 9-10-10: Fails Linpack

Rendering Conclusions
Comments Locked

30 Comments

View All Comments

  • Tchamber - Wednesday, October 24, 2012 - link

    It would be nice to see how memory impacts gaming with a graphics card. Or does the difference get so small that there's no meaningful difference?
  • Magnus101 - Wednesday, October 24, 2012 - link

    I think it already is no meaningful difference in most games, even with the integrated GPU!
    As with all memory performance tests, the real world difference is so small that it makes no sense to throw money at higher speced memory.
    Almost in all circuimstances, perhaps except some special cases like they highlighted in an earlier article hear at anand.
    The biggest difference there was for Winrar64 compression (not the usual unpacking we normal user do almost daily) and that was still only 20% differece between 1333 and 2400.

    I haven't seen any benchies with memory for compilers (programing) or for DAW (music making, like with cubse, sonar and so on), but I suspect it is the same old story of almost no difference.
  • tekphnx - Thursday, October 25, 2012 - link

    Second Life at max settings is a notable exception. I recently upgraded from DDR3-1600 to DDR3-2000 on my i5-760 @3.8ghz with GTX670, and saw a jump of 5-6fps in minimum framerates.
  • JonnyDough - Friday, October 26, 2012 - link

    I COMPLETELY agree. This article is BOGUS. Here's why:

    If you're going to spend money on higher end memory then you may as well fork over a little for a discreet graphics card instead. It will make much more difference in games.

    Intel integrated graphics are only good for office usage still. No real gamer or anyone doing heavy GPU calculations, cares about Intel IGPs.

    Show us what this more costly memory does for a real gamer and we'll consider purchasing it. Three frames per second more on an IGP is not worth the money spent on this memory.
  • IanCutress - Friday, October 26, 2012 - link

    That's the thing - not everyone that has a PC uses it for gaming. As alluded to by Magnus, there are other things that do not need a discrete GPU but are still used by a large number of enthusiasts - VMs, compilations, even non-parallel scientific simulations. You whack in a stupidly large matrix into memory and it will bog down. Failing that, how about financial calculations? Now put all that inside a mITX chassis and board where you're limited to two memory slots. Sure 2x8GB 2400 C11 may not be your first port of call, but if saving an extra 3-5% time on whatever you do actually has a financial impact on your work portfolio, then the early investment could pay off in the long run. Then again, it may not and that 2x4GB 1333 C9 is looking a little sweeter.

    No article is bogus, as you put it. Sure there are good things to review and some that are not so good. If we solely focused on the good, then we'd all be sitting around patting each other on the back for doing a service to the industry. I like reviewing all sorts - you get to see the niggles of the smaller companies that can't invest, or you can point out when a top company is just being stupid. Thus when you get a really good product that shines out from the rest, it is something special to behold.

    Ian

    PS There are plans for a compilation benchmark in future reviews. I'm trying to organise a decent one that I can strap a timer to without sitting in front of the screen for 20 minutes waiting for it to finish.
  • Runamok81 - Friday, October 26, 2012 - link

    True, not everyone uses a PC for gaming. But do you really think the "frost white" Evo Veloce memory is targeted towards the financial or enterprise sector? As silly as it is, Enthusiasts with money than sense WILL pay a premium to raise their benchmark synthetics.
  • ytoledano - Wednesday, October 24, 2012 - link

    Sticks like these coupled with a X79 motherboard with 8 DIMMs populated are biting into server territory - I'm sure! I'm running a 3930K + 48GB (I will soon have to upgrade to 64) as a dedicated SQL server. How much would similar performance cost me if I'd built the system around a Xeon? Probably twice.
  • Blibbax - Wednesday, October 24, 2012 - link

    Roughly £400 extra for the Xeon equivalent of the 3930K.
  • quixver - Tuesday, November 20, 2012 - link

    You are missing out on ECC though.
  • Beenthere - Wednesday, October 24, 2012 - link

    Anyone who has actually tested higher RAM frequencies or RAM quantities above 4 GB. in a typical modern desktop PC knows that frequencies above 1600 MHz. produce no tangible system performance gain in either Intel or AMD powered PCs. Tangible means a change in system performance that you can actually see and or feel. In addition more than 4 GB. of RAM produces minimal gains unless you operate your PC with many applications open or functioning concurrently, which most people don't. CAD, modeling, and some other business applications CAN benefit from more RAM but many consumer apps don't.

    Be advised that RAM benches grosssly mis-represent the actual SYSTEM gains because they assume the RAM is saturated 100% of the time, which it is not. If you run real applications and compare 1333 MHz. to 2400 MHz. you will likely not even be able to tell the difference between the two because DDR3 RAM @ 1333+ MHZ. is not a system bottleneck.

    The RAM mfgs. are doing everything they can to convince enthusiasts to buy high priced high frequency RAM because this is very profitable for them. When you test with real applications and see how tiny the system gains are, you will wish that you had bought 1600 or 8166 MHz. RAM at a reasonable price and used the cash for a faster CPU or GPU.

    If you have money burning a hole in your pocket then by all means buy the fastest RAM you can find. Then you can brag at how cool it is... even if you can't actually use the highest frequency in your PC. Understand that your CPU may not be able to run the RAM anywhere near it's rated frequency. Typically Deneb CPUs top out around 1600 MHz., Thubans around 1800 MHz., Zambezi at 2000+ MHz. and Vishera around 2400 MHz. based on initial testing for Vishera. No one cares about Intel CPUs so I won't post on them... <LOL>

Log in

Don't have an account? Sign up now