The Digital Sensor: A Guide to Understanding Digital Cameras
by Wesley Fink on April 21, 2008 1:00 AM EST- Posted in
- Digital Camera
Lens Equivalence
It is important to understand that a 50mm lens is always a 50mm lens, as that is the focal length. That 50mm specification affects depth-of-field and other image characteristics tied to the lens focal length. However, we can calculate focal lengths for each multiplier that will give the same field of view in the finished image.
With a closer look at field of view and the impact of the changes in field of view, it is easier to understand recent DSLR lens developments. Early DSLR lenses were generally 35mm lenses mounted on the new smaller sensor cameras, except for complete new systems such as the 4/3 digital-only system championed by Olympus.
Using 35mm or full frame lenses was great if your primary interest was telephoto and bird photography, as that 35mm 70-300mm lens that was the second lens for most film buyers now had a field of view like a 112mm-480mm zoom on the new Canon Digital Rebel. Unfortunately interiors, architectural photography, scenes, and fans of the extreme wide angle point of view were left in the cold in the early transition to small digital sensors.
That has been corrected in recent years with lenses designed for smaller sensors, lenses like the Canon 10-22mm, the Nikon 12-24mm, and similar APS C zooms from Sigma, Tamron, and Tokina. Today, whatever your mount and lens multiplier, there are lens choices that can cover the full range of choices for field of view.
A few lenses by Sigma are actually available in every mount and multiplier listed above. Obviously, these few lenses were originally full-frame 35mm that have been carried over with new coatings for improved performance and reduced flare on digital sensor SLRs. One such lens is the Sigma 24mm f1.8. The field of view on the different mounts and sensors this lens will fit illustrates just how the digital sensor size can influence the use of any lens. On the full-frame Canon5D, IDs III, and Nikon D3 this lens is a fast super wide 24mm. On the Canon 1.3X pro models it is still a fast f1.8, but with the FOV of a 31mm moderate wide angle.
On the Nikon D300/D60, the Sony A700/A350, and the Pentax K20D/K200D this fast lens is now a moderate wide angle to near normal lens that shoots images with a 36mm angle of view. On the Canon XSi and 40D we are at 38mm, which most would consider near normal. The Sigma SD14 FOV of 41mm has definitely crept into the normal range. Finally the 4/3 mount version of this lens is one of the "normal" lens choices on the Olympus E3/E510/E410 and Panasonic and Leica 4/3 digital SLR cameras. The 24mm on a 4/3 camera looks at the world as though it is a 48mm f1.8 lens, and competes with the Leica 25mm f1.4 as a much lower cost normal lens.
Similar comparisons could be made in other focal length ranges, but you get the point. Olympus makes a 70-300mm telephoto lens for 4/3, and it is much sought after by "birders", because the view on a 4/3 camera with this lens extends from 140mm to 600mm.
72 Comments
View All Comments
gheinonen - Tuesday, October 14, 2008 - link
I am curious why that CMOS sensor in the high end Canon camera body has excellent low black noise compared to the images from a Fuji Pro S3/S5 with its Super CCD? I have used Fuji Pros since 2004 and have discovered that my black details in low light situations include a lot of random color noise which I do not see when reviewing images from the 1DS Mark2 body. What does the Canon body do to eliminate the random color noise in low light black detail? Is it the CMOS Sensor? Is it the body processing?Separately, the white detail on my Fuji Pro S3 has such expanded dynamic range that I can shoot higher exposures and then lower the exposure back to normal in software and it appears to lower or mask the noise floor in the same way that Dolby Noise Reduction works for audio.
bonedaddy - Wednesday, April 30, 2008 - link
I've been a 35 mm fan for years, and have a significant investment including multiple lenses, macro, ring lights etc. For trips etc the smaller cameras seemed fine--always had small 35 mm, for instance. However, re the digital small cameras, the amount of compression is really disappointing.Is my only choice to go back to a body/lens SLR if I want wide angle and telephoto capability AND good resolution?
Midwayman - Thursday, May 1, 2008 - link
No. But if you want wide/tele and really good high iso performance a SLR is where you need to be. PS camera have alway been a compromise. Small 35mm film cameras had focus issues, and lens issues too. Plus most people use iso 200-400 film which has reasonable quality even in a PS digital camera. The biggest difference is now we're blowing up the picture to 1:1 on our monitors and can see the quality defects easily. I bet if you printed your old compact photos at something like 16x20 you'd probably be unhappy with them too. That's the sort of scale we're looking at on our monitors zoomed in.CyniCat - Thursday, April 24, 2008 - link
Good article, but one glaring mistake: you claimed Sony was the first to make a 12+Mpixel CMOS sensor. I think you meant the first AFTER Canon - the 5D, with its 12.8Mpixel sensor, was on the market in 2005, and the 1Ds Mark II, with a 16Mp sensor, was on the market earlier than that.On a different front, I thought the Nikon D3 was using a Sony sensor, not a Nikon?
Wesley Fink - Friday, April 25, 2008 - link
The 5D and 1Ds II and III are full-frame sensors. The Sony was the first consumer (read affordable) APS-C sensor. Canon now has their own 12 megapixel consumer sensor in the XSi, which we are now reviewing.Nikon did their own designs for the D3 sensor, but they do not, to our knowledge, have the capabilities to manufacturer that sensor. Sony has manufactured sensors for them in the past and present with the D300, D60, D80, and others.
Since the new full-frame is CMOS it is likely manufactured by Sony, or possibley Samsung. Sony and Samsung (who make the Pentax 14.6 megapixel sensor) jointly own several patents on CMOS manufcaturing technology.
Wesley Fink - Friday, April 25, 2008 - link
That should read the read "First consumer 12 megapixel APS-C sensor". As mentioned several times in the article Canon pioneered CMOS technology in a consumer DSLR with the Digital Rebel.Midwayman - Wednesday, April 23, 2008 - link
This article complete skips of fuji's fantastic super CCD technology. Its not really a traditional Bayar array, nor a foveon. True they don't produce a interchangeable lens SLR but they do make prosumer SLR's with their sensor. Also the very notable fuji f30 series cameras were made with this sensor. It was a true triumph in PS camera high iso usability.ElFenix - Thursday, April 24, 2008 - link
fuji makes interchangeable lens SLRs with Nikon F mounts.Midwayman - Friday, April 25, 2008 - link
Hell, then there is no excuse for it not to be included in this article. Especially when it quite clearly states there are no other sensor options at one point.Wesley Fink - Friday, April 25, 2008 - link
There will always be fans of one technology or another who feel slighted. I apologize for that, but Fuji is still basically a Bayer sensor with a differnt pixel shape. I have added the following to the Bayer vs. Foveon page to make Fuji fans a bit happier:"FujiFilm produces one current DSLR with a variant of Bayer technology. It is called the Fuji S5 Pro and is basically a Nikon D200 body with a Fuji Super CCD sensor. The Fuji S5 Pro uses the Nikon lens mount. The Super CCD still uses red, blue and geen pixels in the same standard Bayer ratios. However, the shape of the pixel is hexagonal rather than the squate or rectangular pixels in other Bayer arrays. In the latest version Fuji also added smaller photosites between the normal pixels to gather "dynamic range" data.
Fuji has updated the camera body from the S3 to the S5 in the past year, but the sensor has not been updated for more than 3 years. The current Super CCD is still a 6.3 megapixel sensor, but Fuji specifes it as a 12.3 megapixel due to the addition fo the tiny "brightness" pixels. Tests indicate the true resolution is more comparable to an 8 to 10 megapixel sensor from competitors. The Fuji sensor is still basically a Bayer sensor with a different shape for pixels."
We can probably now all argue whether the Fuji Super CCD is really a Bayer variant or not. It certainly appears that way to me, and as a CCD instead of a CMOS sensor it is need of a serious update if it is to continue as a player in the DSLR market.